Agreena

Transforming agriculture to restore soil and store carbon at scale using MRV and financial innovation

Key highlights of carbon credits from the AgreenaCarbon Project

- Geography: European (10 countries)
- Sector: Soil Carbon / Agriculture
- Methodology: Verra VCS's VM0042 (Methodology for Improved Agricultural Land Management, v2.0)
- Type: Removals + Reductions
- Issuance status: Now issuing
- CCP status: Approved Programme (VCS) and methodology under consideration
- CORSIA: VM0042 approved for first phase
- Add new section before the last bullet point
- 2.3 million credits issued
- Projected to issue 2M+ credits every year

Finance the regenerative transition of agriculture while achieving sustainability goals

High-Integrity

Carbon credits backed by extensive field-level data collection, MRV technology and machine learning, issued under Verra's VCS.

Traceable

In-house MRV enables field-level monitoring of regenerative farming practices and country-level traceability of credits.

Pan-European

In total, Agreena is working with 2,300+ farmers from 20 European countries to restore soil and store carbon in over 4,500,000 hectares.

ESG Impacts

Multiple co-benefits including improved biodiversity and water retention, reduced chemical use and community impacts. "We've noticed a real benefit and an improvement in the quality in the yield and the resilience of our soil to an everchanging climate, and we've seen the improvements in digital technology to be really beneficial in understanding our soils and the fields that we farm. The more we understand about them, the more we can make targeted changes in smaller areas, and sort it out in a more accurate way, and our experiences have been all positive."

-Toby Simpson, UK Farmer

Agreena's high-integrity soil carbon credits

The AgreenaCarbon Project is registered under Verra's internationally accepted Verified Carbon Standard (VCS) VM0042 methodology for Improved Agricultural Land Management. VM0042 provides a scientifically robust methodology to estimate the amount of greenhouse gas emissions reduced and/or removed as soil organic carbon as a result of specific agricultural practices. We use machine learning and advanced satellite-driven remote-sensing in robust and tested digital Measurement, Reporting, and Verification (dMRV) processes that offer best-inclass rigour, accuracy, and traceability at scale.

Accurate Quantification: Baseline is set based on soil data collected from fields.

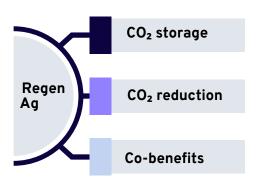
Additionality: Per country, we check regulatory surplus, barrier test & common practice test.

Managed permanence: We manage reversal risk through extensive risk assessments and continuous monitoring using our MRV technology.

How does Agreena's MRV work?

Agreena's MRV technology works to detect field boundaries, cover crops, optimal residue management and tillage practices.

This allows us to verify the accuracy of soil carbon estimates, ensuring our corporate buyers can meet their climate goals with confidence.


Our cutting-edge MRV is enabled by our tech-based capabilities, including:

- Machine learning models for accurate field and practice detection
- Satellite imagery for up-to-date and continuous monitoring of agricultural land
- Remote sensing for field-level information about agricultural practices in use
- Soil data collection for ground-truthing to ensure our calculations match what is happening in the real world

Agreena's in-house MRV technology allows us to:

- Monitor and manage durability actively, reducing uncertainties surrounding risk of reversal
- Ensure the integrity of data submitted to the carbon registry
- Use machine learning models that are continuously improved with field-level soil sampling

Go nature positive with soil carbon certificates

Regenerative Agriculture+

Four regenerative practices are supported by Agreena - reduced or no tillage, improved residue management, cover crops and reducing the use of synthetic fertilisers.

Converting agricultural soils into natural carbon sinks while accelerating decarbonisation through reduced use of chemicals and fossil fuels, by mobilising farmers to switch to RegenAg.

Climate+

Carbon sequestration – Healthy soils act as carbon sinks, pulling CO_2 from the atmosphere.

Reduced emissions – By minimising the use of synthetic fertilisers and reducing tillage, regenerative agriculture reduces GHG emissions.

Soil restoration – Revitalised soils store more water, mitigating the effects of droughts and floods.

Nature+

Biodiversity boost – Regenerative practices encourage a diverse range of flora and fauna.

Soil health – Healthy soils are alive with microorganisms, fungi, and other beneficial species.

Natural pest control – Balanced ecosystems reduce the need for chemical pesticides, letting nature do its work.

People+

Education & training – Providing farmers with knowledge to transition to regenerative practices.

Economic benefits – Finance generated through the sale of carbon certificates directly increases the income for farmers. **Resilient communities** – By revitalising local ecosystems, communities are better equipped to deal with climate extremes.

The Agreena Story

Agreena was started by a passionate group of individuals whose roots were in farming. Over the last 6+ years, Agreena has evolved to bring the best of technology and finance to the world of agriculture.

Three facts underpin Agreena's mission:

- Agriculture and related value chains account for over 30% of global GHG emissions
- More than 50% of the world's soil has been degraded, making it a carbon source rather than a sink
- Farmers' transition to regenerative agriculture requires they overcome financial, technological and knowledge barriers

Europe's leading soil carbon platform

Restoring soil in 4,500,000+ hectares

The AgreenaCarbon Project: First large-scale agricultural cropland project to be verified under Verra's VCS

Agreena: Supporting 2,300 farmers to restore soil health and store carbon across 20 European countries

How it works

- 1. When a farmer signs up for the programme, Agreena measures the baseline (what would happen if the farmer continued with business as usual and did not adopt the regenerative agricultural methods). This is necessary for calculating the carbon removed and emissions reduced in later stages.
- 2. We then guide the farmer to adopt regenerative practices in a fundamentally additional way (meaning that, without us, this would not have happened).
- 3.Once the farmer has adopted regenerative practices, we measure, monitor, report and verify soil carbon sequestration through field samples, satellite imagery and remote sensing.
- 4. The project can then generate carbon certificates. We do this through Verra's Verified Carbon Standard (VCS), under the VM0042 methodology.
- 5. The farmer can then sell the certificates on the voluntary carbon market directly or with Agreena's support.

Several farmers have already shared with us how they're seeing the re-emergence of birds who benefit from the consequential increase in invertebrate food sources. A further consequence shared by farmers is the increase in pollinators such as bees; this being another 'barometer' of positive biodiversity gains.